
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. Bll, PAGES 26,541-26,560, NOVEMBER 10, 2001 

Viscoelastic shear zone model of a strike-slip earthquake cycle 

Fred F. Pollitz 1 

Department of Geology, University of California, Davis, California, USA 

Abstract. I examine the behavior of a two-dimensional (2-D) strike-slip fault system embedded 
in a 1-D elastic layer (schizosphere) overlying a uniform viscoelastic half-space (plastosphere) 
and within the boundaries of a finite width shear zone. The viscoelastic coupling model of 
Savage and Prescott [1978] considers the viscoelastic response of this system, in the absence 
of the shear zone boundaries, to an earthquake occurring within the upper elastic layer, steady 
slip beneath a prescribed depth, and the superposition of the responses of multiple earthquakes 
with characteristic slip occurring at regular intervals. So formulated, the viscoelastic coupling 
model predicts that sufficiently long after initiation of the system, (1) average fault-parallel 
velocity at any point is the average slip rate of that side of the fault and (2) far-field velocities 
equal the same constant rate. Because of the sensitivity to the mechanical properties of the 
schizosphere-plastosphere system (i.e., elastic layer thickness, plastosphere viscosity), this 
model has been used to infer such properties from measurements of interseismic velocity. 
Such inferences exploit the predicted behavior at a known time within the earthquake cycle. 
By modifying the viscoelastic coupling model to satisfy the additional constraint that the 
absolute velocity at prescribed shear zone boundaries is constant, I find that even though the 
time-averaged behavior remains the same, the spatiotemporal pattern of surface deformation 
(particularly its temporal variation within an earthquake cycle) is markedly different from that 
predicted by the conventional viscoelastic coupling model. These differences are magnified as 
plastosphere viscosity is reduced or as the recurrence interval of periodic earthquakes is 
lengthened. Application to the interseismic velocity field along the Mojave section of the San 
Andreas fault suggests that the region behaves mechanically like a -600-km-wide shear zone 
accommodating 50 mrn/yr fault-parallel motion distributed between the San Andreas fault 
system and Eastern California Shear Zone. 

1. Introduction 

In the viscoelastic coupling model [Savage and Prescott, 
1978], time-dependent deformation around a strike-slip fault 
zone is realized by loading, subsequent rupture, and relaxation 
of a fault present in a schizosphere (elastic upper crust) 
overlying a ductile plastosphere. Assuming a two-dimensional 
(2-D) geometry, periodic rupture of the fault, and identical slip, 
interseismic deformation is obtained as the superposition of 
viscoelastic relaxation of the plastosphere summed over the 
infinity of past periodic earthquakes. This model yields far- 
field interseismic motions equal to + 1/2 of the average slip rate 
v0 imposed on the fault. Thus, even when no external 
mechanism is invoked to load the fault (i.e., when the locked 
portion of the fault penetrates the entire schizosphere), the 
model satisfies the expectation of rigid plate-like behavior in 
the far field. In addition, when periodic coseismic offsets are 
factored in, the model predicts that the time-averaged fault- 
parallel velocity of each point is +vol2 (depending on 
location). 

The viscoelastic coupling model makes specific predictions 
for interseismic velocities near the fault as well. In particular, 
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it predicts a wide range of variation in interseismic velocity 
depending on observation time since the last characteristic 
event, Maxwell relaxation time of the plastosphere 2rl/g 
(where rl is viscosity and g is shear modulus), and time interval 
T between repeated earthquakes. In general, fault-parallel 
velocity diminishes with time into the cycle. Moreover, when 
the Maxwell relaxation time is small compared with T, fault- 
parallel velocity near the fault will exceed vol 2 at short times 
after the last earthquake but be considerably less than vol2 
near the end of the cycle. The spatial velocity patterns 
produced during a cycle are generally broader than would be 
expected from a secular strain accumulation model prescribed 
by aseismic slip on a vertical plane beneath the seismogenic 
layer. In southern California around the Mojave segment of the 
San Andreas fault (SAF) the interseismic velocity and strain 
fields as constrained by trilateration [Ebertart-Phillips et al., 
1990; Savage and Lisowski, 1998] and combined triangulation, 
trilateration, and GPS [Shen et al., 1996] are well described in 
terms of strain accumulation on the deep vertical extension of 
the SAF with an apparent locking depth of-30 km. The 
seismogenic layer is only 12-18 km thick in this area [Webb 
and Kanamori, 1985; Jones, 1988; Hill et al., 1990], and 
locking depths greater than this should not be expected. Shen 
et al. [1996] have shown that the velocity field cannot be 
explained even with a reasonable distribution of deep 
dislocations beneath the SAF and nearby parallel faults using 
shallower locking depths -15 km. Savage and Lisowski [1998] 
encountered the same problem when interpreting trilateration 
data very close to the SAF, and they resolved it by interpreting 
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the apparently large locking depth in terms of the viscoelastic 
coupling model which prescribes a reasonable thickness (10-15 
km) for the schizosphere. 

The success of the viscoelastic coupling model for modeling 
the near-fault data considered by Savage and Lisowski [1998] 
suggests that it should be applicable to the long velocity profile 
across the Mojave section of the SAF obtained by Shen et al. 
[1996] and should help to resolve the issue of apparently large 
locking depth. At larger distances from the SAF, however, the 
model encounters a difficulty: predicted fault-parallel velocity at 
large (but not infinite, i.e., -500 km) distance from the SAF 
fault reaches only a fraction of the long-term velocity on each 
side of the fault at intermediate to late times during the 
earthquake cycle. The model predicts small but significant 
horizontal strains even beyond such distances, integrating over a 
large horizontal length scale in order to complete the budget of 
long-term slip rate and to produce plate-like behavior in the far 
field. As such, this model excludes the possibility that a 
continental shear zone be bounded by blocks which are 
relatively thick and nondeforming. For example, the Sierra 
Nevada block, which bounds both the northern SAF system and 
Eastern California Shear Zone, possesses these properties, based 
on both seismic tomography [Humphreys and Dueker, 1994] 
and geodetic measurements [Dixon et al., 2000]. Oceanic 
lithosphere also possesses these properties [Brace and 
Kohlstedt, 1980] and controls to a large extent the history of 
continental deformation within the well-developed strike-slip 
fault systems in California [Atwater and Stock, 1998] and 
Turkey [McClusky et al., 2000]. Around the southern SAF 
system itself, very long baseline interferometry (VLBI) data 
collected in the 1980s and 1990s [Gordon et al., 1993] reveal 
that most of the Pacific to North America relative plate motion 
is accommodated in a roughly 600 to 1000-km-wide zone. The 
viscoelastic coupling model thus goes a long way towards 
resolving the existence of broad zones of strain accumulation 
under the condition that the seismogenic zone be restricted in 
depth, but it appears incompatible with the accommodation of 
most of the relative plate motion within a broad, but finite- 
width, zone as well as the existence of relatively nondeforming 
blocks around this zone. 

An alternative framework designed to accommodate plate- 
like behavior at the boundaries of a broad shear zone postulates 
that (1) viscoelastic relaxation from a quasi-cyclic history of 
great earthquakes and (2) loading of a finite-width shear zone 
contribute in varying degrees to presently observed interseismic 
deformation. In this conceptual model a shear zone loads faults 
from the side, stresses accumulating on the faults may be 
accommodated by steady creep (full or partial) at any depth 
level in the schizosphere or plastosphere, and earthquakes occur 
periodically to relieve the stresses on the locked portions of the 
faults. Other integrated models have been proposed, notably 
combined viscoelastic relaxation, basal shear, and shear zone 
loading [Roy and Royden, 2000a, 2000b]. The net effect of 
factoring in external sources of fault loading is that the time 
history of any point near the fault is more uniform; that is, the 
large excursions in velocity between the early and late cycle 
times are reduced, and plate-like behavior is satisfied at a 
certain distance from the fault. In the following, I concentrate 
on the steps necessary to append the viscoelastic coupling 
model of Savage and Prescott [1978] with loading of a finite 
width shear zone. I will then conduct an analysis of the 
interseismic velocity field around the Mojave segment of the 
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Figure 1. Geometry of strike-slip faulting. A fault parallel to 
the z-axis at x =x0 and extending from y =0 to y =D 
(shaded region) is embedded in an elastic schizosphere of thick- 
ness H. This is underlain by a Maxwell viscoelastic plasto- 
sphere of viscosity fl. This laterally homogeneous model 
(viscoelastic coupling model) is subjected to constant velocity 
boundary conditions at the walls of shear zone (x = +L) to pro- 
duce the viscoelastic shear zone model. At the end of one ele- 

mentary earthquake cycle the fault slips with magnitude Au. 

SAF to illustrate the applicability of the viscoelastic shear zone 
model to recent measurements. 

2. Development 

2.1. Two-Dimensional Shear Zone Deformation 

I assume an x-y-z Cartesian geometry with x the 
distance from a vertical fault, y the depth coordinate, and z the 
fault-parallel distance (Figure 1). A shear zone of width 2L 
encompasses a fault located at x = x0 (-L < x0 < L). The fault 
is taken infinitely long, so that the problem becomes two- 
dimensional. The velocity v = •)tuz at x=+_L is taken to be 
-+ Vo/2 at all times, regardless of depth; that is, the shear zone 
accommodates a relative plate motion of v0 between the two 
bounding blocks. It is an approximation to the process of strain 
accumulation and release in a laterally variable viscoelastic 
system in which the plastosphere occupying the shear zone is 
much weaker than the plastosphere outside of it. Since all 
sources of deformation to be considered here will be transient 

(earthquake-related) sources, I will consider the deformation 
produced by fault motion such that the shear zone boundaries 
are displacement-free. The total velocity would then be a 
superposition of the transient deformation plus secular simple 
shear across the shear zone. 

Our solution will be constructed from the solutions of the 

equations of static equilibrium in an elastic half-space whose 
material properties may vary in the x and y directions but not 
in the z direction. Consider the solution u(x,y ) of the equations 

V'T = -M:ViS(x - x0,Y0) (1) 
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T = )•(V'u) I + 2l.t•, (2) 

where M is the moment tensor, T is the stress tensor, I is the 
identity matrix, •, and I-t are the Lame parameters, and e is the 
strain tensor: 

1 [Vu+(Vu)• ] (3) f_,-•- . 

Particular solutions u = u0 of (1)-(3) for the case x0=O are 
solved subject to the conditions that limu0(x,y) and limu0(x ,y) 

X ---)oo 

exist and are finite and that u0 obeys the symmetry 

Uo(-X ,y ) = - Uo(X ,y ). (4) 

Condition (4) will be satisfied for any M corresponding to a 
shear dislocation on the plane x = 0; i.e., a combination of pure 
dip-slip and pure strike-slip motion on the fault plane. We res- 
trict attention to only the case of strike-slip motions. 

Solutions of (1)-(3) are well known for both a uniform elastic 
half-space and stratified elastic media, with solutions readily 
obtained by means of the Betti reciprocity theorem [Savage, 
1980] or propagator matrix methods [e.g., Wason and Singh, 
1972; Rundle, 1980]. 

In the viscoelastic shear zone model I seek the solutions to 

(1)-(3) subject to different boundary conditions. For a 
sufficiently wide shear zone, coseismic offsets at the shear zone 
edges will comprise a very small portion of the slip budget, and 
the velocity at those edges during interseismic periods will be 
approximately constant. Thus it is appropriate to impose the 
boundary condition 

u(L,y ) = u(-L ,y) = 0. (5) 

Consider first the case where the fault plane bisects the shear 
zone: x0 = 0. Solutions to (1)-(3) subject to (5) may be con- 
structed from particular solutions u0 by means of superposition 
of successive image solutions: 

u(x ,y ) = u0(x ,y ) + • 0(x +2LN,y ) + u0(x-2LN ,y ) 
N=I 

t_x---,• -• (-L < x < L,y >_ 0). 

(7) span the range of even and odd integer multiples of 2L, 
respectively. 

Solutions (6) and (7) are, of course, applicable not only to 
single solutions of (1)-(3) but also to linear combinations of 
these solutions. In particular, they are applicable to describe 
time-evolving viscoelastic deformation associated with steady or 
step-like elastic dislocations in situations which satisfy the 2-D 
geometry and the linear stress-strain relation (2). In the follow- 
ing sections we obtain expressions for time-dependent deforma- 
tion associated with specific dislocations on a laterally homo- 
geneous viscoelastic Earth model, derive the modification to 
this deformation in the presence of the shear zone, and explore 
general implications for the behavior of a strike-slip fault sys- 
tem constrained by a shear zone. 

2.2. Viscoelastic Coupling Model 

Following Savage and Prescott [1978], I outline the solution 
for time-dependent deformation at Earth's surface associated 
with a strike-slip dislocation, assuming the 2-D geometry of 
Figure 1. Throughout our analysis, the only nontrivial displace- 
ment component is that parallel to the z axis. A vertical fault 
taken parallel to the z-axis extends from Earth's surface y=0 to 
a depth y=D. This is embedded in an elastic layer of thickness 
H and rigidity I-t• overlying an elastic half-space of rigidity I-t2. 
To obtain the elastic response to an earthquake on this fault, we 
first consider the deformation associated with a dislocation Au 

on the vertical plane y > D. This is described by a Burgers 
vector Au (screw dislocation) applied at y=D. We associate 
positive Au to slip below depth D in the left-lateral sense. The 
elastic solution for z-displacement at Earth's surface is [Nur 
and Mavko, 1974]: 

uois (x ,O;t ) -An(t) {tan-• [• 
n_ x 2nil + D 

+ •F n 
n=l 

tan_ 1 x 
2nil - D 

(8) 

where 

(6) F = gi - g2 (9) 
[-1,1 +[-1, 2 

This consists of a superposition of the original source at x = 0 
plus image sources located at x = + 2L, 4L, 6L, etc., plus sim- 
ple shear. Since each image source and the solution x/L satisf.v 
the homogeneous system (1)-(3) (i.e., without the source term), 
it follows from (4) that u(+ L,y) converge to zero. 

Consider next the more general case -L < x0 < L (the fault 
plane not necessarily bisecting the shear zone). The solution is 

u(x ,y) = Uo(X-xo,y) + Y• u0[x +(2L)(2m )-x0,y ] 
m=l 

+ Uo[X-(2L )(2m )-xo,y ] 

+ Uo[X -2L (2m -1)+x0,y ] 

+ m• 1 Uo[x+2L(2m-1)+xo,y] 

}- [limuo(x,y)l x (7) 
This consists of a superposition of the original source at x = x0 
plus image sources located at x = 2L-x0, 4L+x0, 6L-x0, 
10L+xo .... and x =-2L-xo, -4L+xo, -6L-xo, -10L+xo, etc., 
plus a simple shear. It is clear that the two m summations in 

We introduce viscoelasticity by allowing the half-space to be 
viscoelastic with short-term rigidity I,t2 e and viscosity fl. We 
assume that the short-term rigidities of the upper layer and the 
half-space are identical: 

•1,1 e = •1,2 e = •1,. (10) 

Viscoelastic deformation is realized by applying the correspon- 
dence principle to (1) to obtain UDis(x,O;s) in the Laplace 
transform domain, followed by evaluation of the inverse 
Laplace transform. This requires that Au(t) be replaced by 
Au (s) = L [Au (t)], and that the rigidity of the half-space be 
replaced by 

g2(s)- g•s. (11) 
s+___ g 

ri 

Substituting (10) and (11) into (9) yields 

g 1 (12) F(s ) = 2 ri s + ----g ' 
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The Laplace-transformed displacement is thus 

uDis(x,O;s)= Au(s) {tan-l[ x 
tan_ X _ 2nil + D 

+ E It(s)]" 
n=l 

[ x tan-i 2nil - D (13) 

For specific time-dependent dislocations Au (t), time- 
dependent deformation in the viscoelastic system is obtained by 
evaluating L-l[UDis(X,O;s)]. This evaluation requires us to 
make use of the property 

(n-l)! ' (14) 
where 

'r = t. (15) 
211 

We consider two specific source cases. First, we seek the 
response of the viscoelastic system to an earthquake with left- 
lateral strike-slip displacement Au across the vertical plane at 
x=0 from Earth's surface to a depth D. Denoting this response 
by u (ø we have 

U(1)(j,O;s) --Au(s) [q-• ] -- /4Dis(X ,0;S ) (16) 
with + taken according to x<>0 and 

Au 
Au(s) = (17) 

s 

for a step function source Au(t)= Au H(t). In the time 
domain, from (13)-(16) we obtain 

• X uO)(x ,0;t) = Au - tan -1 •- - •] An ('r) 
n=l 

Itan_•{ x x 1} 2nil + D -tan-1 2nH - D 

(t > 0) (18) 

where 

An = i 'rn-1 e-• d'r 1 (19) 
0 (n-l)! 

Second, we seek the response of the viscoelastic system to 
steady slip at a rate vf below depth D beginning at initial time 
t =0. Denoting this response by u ©, we have 

U (2)(X ,0;S ) = UDis(X ,0;S ) (20) 
with 

1 

au(s) = 55- vy 

for a source Au (t) = vf t (t > 0). This leads to 

L-•[Ot2tu(2)(x,0;t)] = • tan -• + • [r(s)ln 
n=l 

2nil ½ D 2nH• ' (22) 

Evaluation of the inverse Laplace transform of (22) followed by 
double integration over time yields 

u(2)(x,O;t)= vf {Itan-• x 
tan_ x 2nil + D 

2rl oo t +•- • Cn(z) n=l 

2nil - D }. (23) 
In deriving (23) we have made use of the relation 

Cn ('0 = i An ('0 d'• = '• An ('0 - n An+•('O. (24) 
o 

A,• ('0 and C,• may be calculated recursively using the relations 

qjn -1 
An (•)=-• e -• + An-•(z), 

(n-l)! 

Cn ('C) = Cn-i('C) - An ('r), (25) 
A •('c) = 1 - e -•, 

Cl('r) = 'r - A l('r). (26) 
Equations (25) and (26) are equivalent to equations (20)-(23) of 
Savage and Prescott [1978]. 

Equations (18) and (23) are the basis for the viscoelastic cou- 

pling model of Savage and Prescott [1978]. They are con- 
venient for describing the response at Earth's surface from sin- 
gle earthquakes and steady loading, as well as the composite 
effects of multiple earthquakes compounded over multiple 
earthquake cycles. In section 2.3 we use these equations as the 
starting point for generating the viscoelastic response under the 
boundary conditions appropriate for a finite width shear zone. 

2.3. Viscoelastic Shear Zone Model 

I examine how the viscoelastic coupling model is modified to 
account for the effect of embedding the system in a finite width 
shear zone, also allowing for an arbitrary fault location with 
respect to the shear zone edges. As written in (7), the required 
modifications can be obtained in terms of the solution u0 of the 
equivalent laterally homogeneous problem by superposition of 
an infinite series of image sources. The shear zone solution for 
the two dislocation cases discussed in section 2.2 is obtained by 
substituting a deformation field of the form u0 = u © • or 
u0 = u © • (equations (18) or (23)) into (7). 

The •nathematical form of the image solution (7), involving 
constant velocity boundary conditions at the shear zone edges, 
is an approximation which supposes that conditions are 
appropriate for its validity. Specifically, it is assumed that the 
shear zone edges as well as the image faults are far removed 
from the embedded shallow fault(s) such that coseismic offsets 
from an elastic dislocation along the fault(s) are negligible, i.e., 
Ix0 :]= L I > H > D. This justifies application of the image 

solution to the "coseismic" part of the viscoelastic coupling 
solutions, i.e., the leading terms of (18) and (23). In order to 
apply the image solution to the "relaxation" parts of (18) and 
(23) it is further assumed that in the real system, plastosphere 
viscosity is much lower within the shear zone than outside of it. 
This may be regarded as assuming that the effective elastic 
plate thickness is much greater outside of the shear zone than 
within it. Under partial or complete relaxation of this system 
the thin stress guide (within the shear zone) does not 
significantly deform the thick stress guide (bounding material 
outside of the shear zone) beyond a narrow vertical boundary 
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layer. These assumptions and conceptual model, made here to 
justify application of the image solution (7) to a layered viscoe- 
lastic system, are also implicit in numerical models that charac- 
terize the response of a layered viscoelastic system embedded 
in a shear zone with plate-like boundary conditions [Roy and 
Royden, 2000a, 2000b]. The accuracy of the approximation is 
addressed in section 3.5. 

It is convenient to define a Greens function G (x ;xo,L,h) as 
the response of the viscoelastic system, embedded in the shear 
zone of width 2L, to a unit Burgers vector applied at position 
x0 (-L < x0 < L) and depth h. This Greens function is derived 
in Appendix A. The viscoelastic response of the two slip cases 
considered in section 2.2 can then be evaluated under the shear 

zone boundary conditions (5) by the expedient of substituting 

+ 71; 71; 71; X 
2 2 2 L 

tan-1 [• ]-•G(x;xo,L,h) 
(27) 

throughout equations (18) and (23). For reference I summarize 
the displacement fields in the viscoelastic shear zone model as 
follows: 

1. Viscoelastic response to an earthquake with left-lateral 
strike-slip displacement Au across the vertical plane x = x0 
from Earth's surface to depth D is: 

• 2 2 L 

- • A n (•) (x ;xo,L ,2nil +D ) - G (x ;xo,L ,2nH-D ) 
n=l 

(t >_ 0). (28) 

The + sign is taken according to x><x0 . 
2. Viscoelastic response to steady slip at a rate vf on the por- 
tion of the vertical plane x = x0 below depth D beginning at 
initial time t =0 is: 

• G(x;xo,L,D)t + • Cn(X) u•(x,0;t)= n tl n=• 

ß [G(x;xo,L,2nH+D)-G(x;xo,L,2nH-D)I}.(29 ) 
The subscript SZ has been used to distinguish the "shear zone" 
solutions (28)-(29) from the corresponding laterally homogene- 
ous solutions (18) and (23). 

The Greens function in (A6) has the property 

G (+L ;xo,L ,h ) = 0. (30) 

It follows that each of the shear zone solutions (28) and (29) 

satisfy the zero-displacement boundary condition (5): 

u • (+L ,0;t ) = u • (+L ,0;t) = 0. (31) 

3. Shear Zone Response to Earthquake Cycle 

3.1. Asymptotic Properties of Conventional Viscoelastic 
Coupling Model 

In the conventional viscoelastic coupling model, steady slip 
below depth H has vanishingly small effect on surface velocity 
as t --> oo. This can be seen be setting D = H and taking the 
limit '• --> oo in (23). Since 

lima n (•) = 1 (32) 

•t Cn ('lJ) = • An ('•), (33) 
the n-summation in (23) annihilates successive terms, and the 
remainder after the first n summations approaches 

lim 0tU(2)(X,0;t) - tan -1 
t-->oo 2(n + 1)H 

(34) 

which approaches zero as n --> oo. The independence of fault- 
parallel velocity from steady slip in the plastosphere at 
sufficiently long time after initiation has been proven for other 
cases of imposed flow in the plastosphere by Savage [2000]. 

We define an elementary earthquake cycle as an interval of 
steady slip beneath depth D at rate vf of duration T followed 
by an earthquake of slip Au =vf T on the fault (0 < y < D). 
We consider the asymptotic behavior of the viscoelastic system 
observed a time t (0 < t < T) after M consecutive earthquake 
cycles as M-->oo. 

The velocity in the viscoelastic coupling model at time t 
after the M th cycle is 

{ M (1)[x,O;t+(m 1)T]} v (x,0;t ;M) = • •t u -- 
rn=l 

+ •tU(2)(x,O;t +MT). (35) 

(In cycle M=0 the term in braces in (35) does not contribute.) 
Applying the relation 

• •)tf[T + (m-l) '•0] 8'r = m---0 

f ('• + (M-I) '•0) (36) 

to 

f ('0 = uO)(x,O; t) 
(37) 

'rø= -•B T, 
we obtain for the average velocity during the (M+l)th cycle 
(including the earthquake which terminates the cycle)' 

-- v(x,O;t;M) dt = + vf vf _--•- + -•- (M+I) 'c0 n((M+l)'c0) T 0 

[tan-• [ x -tan -• x 1 2nil + D 2nil - D ' (38) 

It can be shown from (25) and (26) that 

lim {An [(m +1) z0] - An (m z0) M-->oo M z0=0. (39) 

Thus 

T 

lim 1 m v (x,0;t ;M) dt = + vf. 
•t-ooo T 2 

(40) 

The average velocity over one earthquake cycle is the average 
slip rate of the respective sides of the fault. We shall obtain 
corresponding results in the viscoelastic shear zone model after 
considering the appropriate form of shear zone loading. 
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3.2. Shear Zone Loading 

Suppose that the shear zone contains a fault network 
{(x0,D ,v )s } accommodating a net relative velocity v0: 

• vf = vo. (41) 
f 

The preceding results suggest two possible end-member 
methods of simulating loading of the shear zone depending on 
our notions of the flow pattern in the plastosphere. In both 
cases, it is assumed that each fault at (xo)f undergoes steady 
slip at rate vf between depths Df and H ;, that is, a portion of 
the lower schizosphere accommodates steady slip to varying 
degrees depending on the values of D s for each fault. 

In the first case, steady slip at rate vf continues in the down- 
ward extension of each respective fault; i.e., flow in the plasto- 
sphere is constrained to be discontinuous at discrete boundaries 
(xo)f. It is convenient here to specify the arguments x0 and D 
explicitly in (29): u•)(x,O;t;xo,D). We suppose that steady 
deep slip occurs in response to loading of the shear zone at 
x = +_L at the summed rate of all of the slipping segments, 
leading to the shear zone loading contribution 

ltload(X,O;t)= • {lt•)[(x,O;t;(Xo)f,Df ] + vf x } S '•- '•' t . (42) 
In the second case, steady slip beneath depth D s terminates 

at depth H, and flow in the plastosphere is continuous. Shear 
zone loading in this case results solely from background block 
motions. The loading component is then the sum of steady slip 
from depth Df to H beneath the various fault segments plus an 
imposed shear zone velocity field: 

U load(X ,0;t) ---- • IU • ((X ,0;t ;(Xo) f ,Of ) 

I 120 X - Us(•)((x'O;t;(xø)r'H) + -• L t. (43) 

3.3. Asymptotic Behavior of Viscoelastic 
Shear Zone Model 

In the viscoelastic shear zone model, steady slip below depth 
H again leads to vanishingly small velocity as t --> oo. Setting 
D = H and taking the limit •;--> oo in (29), we find that the 
velocity after the first n summations is 

lim Ot u •) (x ,0;t ) = vf G [x ;xo,L ,2(n + 1)H ]. (44) 
Using the fact that limcothr•h/4L = limtanhr•h/4L = 1 and 

h -->oo h -->oo 

(A6), we obtain 

lim G (x ;xo,L ,h ) = 0. (45) 
h -->oo 

and thus taking n-->oo in (44), 

lim Ot u •) (x ,0;t) = 0. (46) 
t--->oo 

As a corallary, for finite t the displacement field has the pro- 
perty 

Ot u • (+L ,0,t) = 0, (47) 

which follows immediately from (31). 
Equations (46) and (47) show that the asymptotic contribu- 

tion of steady creep below depth Df (equation (42)), to the 
velocity field at Earth's surface behaves as 

lim0tUload(X,0;t) = • 12f X _ V0 X 
t--->oo f 2 L 2 L 

0t/tload(+__m,0, t) = • 12f _ V 0 
f 2 2 

(48) 

Similarly, (46) and (47) show that the asymptotic contribution 
of steady creep restricted to the depth range Df<y<H again 
obeys (48). The surface velocity field produced sufficiently long 
after initiation of the system in the viscoelastic shear zone 
model is thus identical for both models of shear-zone loading. 

The velocity in the viscoelastic shear zone model averaged 
over one earthquake cycle is +-• the slip rate of the considered --2 

fault. To prove this, we consider velocity at time t after the 
Mth elementary earthquake cycle in the viscoelastic shear zone 
model. This consists of a superposition of deformation from 
periodic earthquakes plus loading given by either (42) or (43): 

Vsz(x,O;t;M) = • Otu•-2[x,O;t+(m-1)T] 
m =0 

'3- 0 t U load(X ,0;t +MT). (49) 

In the case that U load is given by (42), i.e., steady creep in the 
entire region beneath the locked portion of the fault(s), we 
obtain for the average velocity during the (M+l)th cycle 
(including the earthquake which terminates the cycle): 

-• v sz(X,0;t ;M) dt = + vf + vf - 2 '-• (m+l) •0 n((m+l)•0) 

-An(M•o)I-nIAn+I((M+I)•o)-An+I(M 
(x ) - (x ) 1. 

Use of (39) leads to 
T 

lim 1 -- v sz(x ,0;t ;M) dt = + vs (51) M-•oo T -2' 

In the case that Uload is given by (43), i.e., steady creep res- 
tricted to D s <y <H for fault f, we obtain for the average velo- 
city during the (M+l)th cycle the right-hand side of (50) plus 

ñ - T ' 

Equations (46) and (39) then establish (51). 

3.4. Evolution of Shear-Zone Deformation 

I consider the deformation within a shear zone driven by 
steady slip of its sides (and possibly the deeper extensions of 
the rupturing fault planes) and periodic occurrence of charac- 
teristic earthquakes. I will examine the temporal evolution of 
the system to illustrate how the system approaches periodic 
behavior after sufficient time and to discern differences with the 
conventional viscoelastic coupling model. 

In the following examples, a single fault at x0 = 0 extending 
to depth D is embedded in an elastic plate of thickness H and 
a shear zone of half-width L. In one elementary earthquake 
cycle, steady slip occurs below depth D at rate vf for a time 
interval of length T, after which a slip event of magnitude 
Au =vf T occurs on the fault. Velocity in the laterally homo- 
geneous model (LHM) (conventional viscoelastic coupling 
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Figure 2. Cumulative fault-parallel displacement for the first two consecutive earthquake cycles of length T, 
each consisting of steady slip at rate vf on the plane x = x0 below depth D plus an earthquake above depth D 
with slip Au =vf T terminating the cycle. Solid curves indicate laterally homogeneous model (equation (35)). 
Dashed curves indicate shear zone model (equations (42) and (49)) with L = 10H. The length of the earth- 
quake cycle in units of plastosphere relaxation time is specified by %. Numerals next to curves indicate elapsed 
dimensionless time in units of %. The discontinuity in displacement upon entering a new cycle (i.e., 'r = 1.0-'r0 
versus 'r = 1.0+%) is the coseismic effect of the earthquake at the end of the cycle (cycle 0 has only the effects 
of steady loading). 

model) and the viscoelastic shear zone model (SZM) are calcu- 
lated according to (35) and (49)/(42), respectively, for the initial 
cycles (M =0 or 1) or later cycles (M = 20 or 21). 
Corresponding cumulative displacement from initial time t = 0 
up to a specified time within these cycles is calculated straight- 
forwardly as the time integral of (35) or (49). Both partial 
locking (D/H=0.5) and complete locking (D/H=I.0) will be 
considered. 

Figure 2 shows cumulative displacement during cycles 
M = 0 and M = 1 for relatively large plastosphere viscosity 
(% = 1 or, equivalently, q = gT/2). Time is represented with 
dimensionless 'r in multiples of %. Displacement during cycle 
0 reflects only the initiation of fault loading before any earth- 
quake has occurred. The difference between the 'r = 1.0+% and 
'r = 1.0-% curves is simply the coseismic offset of the first 
earthquake. Slight differences between displacements on the 
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Figure 3. Same as Figure 2, but with % = 5. 
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LHM (solid curves) and SZM (dashed curves) reflect the fact 
that the shear zone walls (x = + 10H) move at constant velo- 
city +vf/2 in the shear zone model but less than the steady 
slip rate below depth D (also vf /2) on the laterally homogene- 
ous model because of the retarding effect of the locked fault 

interface. Deformation during cycle 1 ('c _> 1.0+%) is generally 
characterized by a greater relative velocity of the boundary 
x = + 10H on the laterally homogeneous model because of the 
additional contribution of postseismic relaxation following the 
first earthquake. Differences between the LHM and SZM are 
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Figure 5. Same as Figure 2, but with % = 5 and for cycles 20 and 21. 
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Figure 6. Fault-parallel velocity at specified times during cycles 21 and 200 with indicated model parameters. 
Solid curves indicate laterally homogeneous model (equation (35)). Dashed curves indicate shear-zone model 
(equations (42) and (49)) with L = 10H. Each top panel displays the difference between the shear zone model 
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Figure 7. Same as Figure 6, but with % = 5. 
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more pronounced when D/H is increased and when % is 
increased (Figures 2 and 3). Loading effects from steady slip 
beneath the fault are, as expected, diminished both for higher 
D/H and higher %. In the latter case, viscosity is relatively 
low and the transfer of loading stress from the plastopshere to 
the schizosphere is consequently dampened. 

The displacement patterns during cycles 20 and 21 shown in 

Figure 4 (% = 1) and Figure 5 (% = 5) follow the same pat- 
terns, but at this more evolved stage the differences between the 
LHM and SZM apparently depend mostly on D /H rather than 
on %. This reflects the insensitivity of both models to loading 
below depth H after sufficient time has passed, so that the 
differences between the LHM and SZM are to a large extent 
inherited from the initial retardation of the LHM This is espe- 
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cially apparent for the case D /H = 1.0 and 'to = 5, where the 
large differences existing at the end of cycle 1 ('r = 2.0-'to in 
Figure 3) are maintained even after the system is highly 
evolved ('r = 22.0-'ro in Figure 5). These differences are not 
related to the neglect of coseismic offsets at the shear zone 
edges in the SZM since most of the initial retardation of the 

LHM occurs during cycle 0 and prior to the first earthquake, 
Even a conservative comparison of time N- displacement on the 
SZM with time N + displacement on the LHM shows strong 
retardation of the LHM at all integral cycle times N. 

The displacement patterns sampled in increments of one-half 
cycle in Figures 2-5 conceal, however, large variations in velo- 
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Figure 9. Same as Figure 6, but with x0 = L /3 and % = 15 (cycle 21 only). 

city within a cycle and corresponding differences between the 
spatial and temporal velocity patterns of the two models. Fig- 
ures 6 and 7 show the velocity patterns in cycles 21 and 200 
for the same groups of model parameters considered previously 
(% = 1 or 5, respectively). Figure 8 shows the velocity pattern 
for % = 15, Figures 6, 7, and 8 together thus track the model 
responses through % = 1, 5, and 15. Figures 6-8 reveal small 
(up to 6% of vf) differences between the LHM and SZM for 
% = 1, modest differences (up to 17%) for % = 5, and large 
differences (up to > 50%) for % = 15. Larger D /H generally 
produces greater differences between the two models. In all 
cases, differences in velocity patterns between cycles 21 and 
200 are <0.5%, so all systems considered are essentially 
evolved to maturity by the time of the 21st cycle. 

In the preceding cases the fault is centered on the shear zone 
(x0 = 0), and thus all deformation is symmetric. In Figure 9 we 
consider the case x0 = L /3 in which the distances of the fault 

from the shear zone edges are in the ratio 2:1, other parame- 
ters being chosen as in Figure 8 (low-rl plastosphere). This 
deformation remains symmetric for the LHM (i.e., zero velocity 
at x = x0) but is generally nonsymmetric for the SZM. The 
velocity differences between the LHM and SZM are greater 
than for the equivalent nonsymmetric deformation, reaching 
>300% near the "short" shear zone edge (L/3<x <L). 
Interestingly, the absolute velocities of the fault zone itself for 
the two models generally differ, and a narrow region where 
velocity differences between the two models are minimized 
(Av -0) is located on the other side of the shear zone near 
x --L/10. 

3.5. Accuracy of SZM Formulation 

In the preceding comparisons, it is important to consider the 
accuracy of the image solution used to derive the SZM, in 
which coseismic offsets of the shear zone edges x=+L have 
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Figure 10. Bias in the velocity field during cycle 21. Dashed 
lines indicate upper bound velocity response of the SZM to 
time-periodic edge perturbations specified by the episodic cose- 
ismic slip at the shear zone edges, evaluated during cycle 21. 
Solid lines indicate corresponding difference between SZM and 
LHM velocity field for previously considered cases with 
D/H =1. 

been assumed negligible. This approximation could be 
removed exactly by introducing small distributed sources at the 
shear zone edges acting episodically with the fault motions but 
also continuously fluctuating slightly throughout the seismic 

cycle such that the average perturbation on the edges over one 
cycle (including the coseismic offset) is zero. The temporally 
continuous fluctuation is of the same order of magnitude and 
tends to nullify the episodic perturbation. Thus I consider 
specifically the episodic perturbation, which can be calculated 
exactly by means of a simple image solution of periodicity 4L 
and depth-dependent slip equal to the coseismic slip of the ori- 
ginal system evaluated at x=+_L. This is just a sum of two 
SZM solutions with dislocation sources at x =+_L. 

In all models considered here, the depth-dependent edge per- 
turbation in question does not exceed 1.6% (of Au) for 
D/H=0.5 or 3.2% for D/H=I.0. To place an upper bound on 
the possible time-dependent velocity response of the system to 
a time-periodic perturbation of this type, it may first be noted 
that this response depends on the depth dependence of the edge 
perturbations. If the edge perturbations were uniform and 
extending to infinite depth, the system would respond instan- 
taneously by producing a simple shear across the shear zone 
with identically zero subsequent velocity perturbation. Thus a 
significant velocity perturbation produced by uniform edge per- 
turbations at x=_+L from depth 0 to H is balanced by an equal 
but opposite velocity perturbation produced by uniform edge 
perturbations from depth H to oo. It follows that a conservative 
estimate of the velocity response of the system to the actual 
edge perturbations is obtained by specifying uniform edge per- 
turbations from depth 0 to H with the above magnitudes. The 
resulting bias in the velocity field during cycle 21 is shown in 
Figure 10 together with the corresponding velocity differences 
between the SZM and LHM for the previously considered cases 
with D/H=I. The velocity bias is likely smaller than these esti- 

mates because given Ix0 • L I > H, the x=+L edge perturba- 
tions considered should be nearly uniform from the surface to a 
depth significantly greater than H. I interpret the much larger 
differences between the LHM and SZM as almost entirely due 
to the very different relaxation behavior exhibited by them, 
which is due fundamentally to the fact that the two quarter- 
space volumes of plastosphere which bound the shear zone may 
relax in the LHM but remain rigid in the SZM. 

4. Implications for Mechanics of Strain 
Accumulation in Southern California 

4.1. Properties of Velocity Variation During a Cycle 

An ubiquitous property of the low-viscosity (high %) simula- 
tions is that the LHM velocity greatly exceeds the SZM velo- 
city early in a mature cycle, but the roles are reversed later in 
the cycle with the SZM velocity greatly exceeding the LHM 
velocity. Although both models possess large velocity varia- 
tions within a cycle, it is clear from Figures 7 and 8 that the 
LHM exhibits the largest velocity variations. In the % = 15 
case, LHM velocity exceed Vo/2 by 150% (D/H = 0.5) or 
400% (D/H = 1.0) during the first third of the cycle but 
decreases to 67% (D/H = 0.5) or 34% (D/H = 1.0) of Vo/2 
during the final third of the cycle. The SZM exhibits more 
moderate variations during the cycle. The results for % = 5 
(Figure 7) and % = 15 (Figure 8) show that its velocity pattern 
approaches that of a simple shear zone during the second half 
of the cycle. 

There are significant differences in the spatial and temporal 
patterns between laterally homogeneous deformation produced 
by a fault loading and rupturing cycle and the corresponding 
deformation produced within a finite width shear zone. 
Whether one model or the other applies depends on the viscoe- 
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Table 1. 2D Shear Zone Parameters of San Andreas Fault, Mojave Segment 

Fault System L, km H, km D/H x 0, km vfi, mm/yr T, years 

San Andreas 300 12-18 0.5-1 0 34 200-330 

Eastern California 300 12-18 1 125 9 10 4 
Shear Zone 

a Right-lateral slip rate parallel to the Mojave segment. 

t, years 

124-169 

104 

lastic structure around the fault zone. One criterion for defining 
the edge of a shear zone may be where gradients in geodeti- 
cally measured velocity decrease to very small level, as Dixon 
et al. [2000] have suggested for delineating the western boun- 
dary of the Eastern California Shear Zone north of the Garlock 
fault. This notion would require that the geodetic observations 
in question be observed relatively late in a cycle, as early post- 
seismic transients can produce zero or even negative shear 
strains near the fault. An alternative criterion is that regions of 
relatively thick lithosphere which bound a strike-slip fault zone 
must possess a cooler geotherm than the fault zone itself, and if 
viscosity is primarily thermally controlled, then the bounding 
thick lithospheric blocks (belonging to presumably different tec- 
tonic plates) will behave macroscopically as elastic boundaries 
and can be well approximated as rigid boundaries. Without 
considering the origin of thermal differences between the fault 
zone and surrounding thicker lithosphere, the above two criteria 
are related in the sense that the fault zone will behave mechani- 

cally as a thin stress guide and the bounding blocks will behave 
as a thick stress guide which is relatively difficult to deform 
[e.g., Kusznir, 1991]. 

4.2. Mojave Segment of the SAF 

4.2.1 Delineation of Shear Zone. The above criteria may be 
applicable to the southern SAF system. I choose to focus on 
the Mojave section of the SAF because available data are of 
high quality and the fault systems which contribute to long-term 
deformation are fairly well understood. These are the SAF sys- 
tem and the Eastern California Shear Zone (ECSZ). The 
southwest boundary of a shear zone bounding these fault sys- 
tems may be defined by the contact of continental lithosphere 
with oceanic lithosphere -300 km southwest of the SAF [Trehu, 
1991]. Beginning -80 km northeast of the Mojave segment, 
the ECSZ defines a-200-km-wide zone of active faulting 
[Unruh et al., 1994] which includes the faults which ruptured in 
the 1992 Landers and 1999 Hector Mine earthquakes. The 
large width of the deformation zone based on faulting patterns 
is consistent with the fault-parallel velocity pattern around the 
Mojave section of the SAF [Sheri et al., 1996], which suggests 
that the actively shearing zone extends from at least-200 km 
southwest to +150 km northeast of the SAF. I interpret the 
faulting pattern as roughly defining a shear zone of half width 
L- 300 km, inclusive of the breadth of deformation spanned 
by the offshore Santa Lucia Escarpment [Trehu, 1991] to the 
southern Death Valley fault zone at the eastern end of the 
ECSZ. Other parameters defining the SAF system and ECSZ 
are summarized in Table 1. The San Andreas fault is placed in 
the middle of the shear zone (x0=0) on the basis of the sym- 
metry of the observed fault-parallel velocity field with respect 
to the San Andreas fault [Shen et al., 1996]. The seismogenic 
layer depth D in the 12-18 km range is considered appropriate 
for the region [Webb and Kanamori, 1985; Jones, 1988; Hill et 

al., 1990]. For concreteness and because of the -15 km depth 
extent of faulting during the 1992 Landers earthquake [Wald 
and Heaton, 1994], the ECSZ fault system is assumed locked 
along the entire elastic layer, i.e., D = H. I consider a range of 
locking depths for the SAF system ranging from 
0.5 _< D/H _< 1.0. The mean slip rates vf accommodated across 
these faults and their corresponding repeat times T are con- 
sistent with estimates from the literature [e.g., Savage et al., 
1990; Feigl et al., 1993; Sauber et al., 1994; Shen et al., 1996; 
Rubin and Sieh, 1997]. The chosen values of 34 and 9 mm/yr 
for the long-term fault-parallel slip rate of the SAF and ECSZ, 
respectively, predict 43 mm/yr parallel to the Mojave segment 
of the SAF (which strikes N65øW) and 50 mm/yr being accom- 
modated within the 600-km-wide shear zone parallel to the 
local Pacific-North America motion direction (which strikes 
N35øW). This is consistent with the 51 mm/yr Pacific-North 
America relative plate velocity estimated by DeMets and Dixon 
[1999] and the Vandenberg-North America velocity of 48.4 
mm/yr determined by VLBI measurements [Gordon et al., 
1993]. 

4.2.2 Characterization of earthquake cycle. For observa- 
tions recorded from 1971 to 1992, Savage and Lisowski [1998] 
argued that a time 'r/'r0- 0.6- 0.8 into the present cycle 
likely applies to southern California, on the basis of an assumed 
average repeat time T of large events of 150 to 200 years and 
the time since the last large event (1857). Clustering of large 
events, however, is documented such that two large events 
closely spaced in time tend to rupture the entire 600 km long 
span of the SAF from the Parkfield to Indio segments, with 
cluster repeat times of 200 to 330 years [Sieh et al., 1989]. 
The characterization of the earthquake cycle in this region in 
terms of such clusters better satisfies the 2-D assumption of the 
modeling and has less scatter than the repeat times of individual 
large historic events. Given the 136 to 157 years elaspsed since 
the mean time of the last cluster (1812 and 1857 events), recent 
observations would correspond to a time 'r/'ro- 0.4- 0.8. If 
the observations are dominated by relaxation effects following 
the two most recent clusters, then the upper end repeat time of 
330 years applies, and recent observations would correspond to 
a time 'r/'ro- 0.4-0.5 into the present cycle. In contrast, the 
large repeat time T for the ECSZ does not need to be accu- 
rately known since the observation time to be considered is 
only a few years before the 1992 Landers, 1999 Hector Mine 
sequence in the ECSZ, i.e., t/T is very close to 1 for the ECSZ. 
For any reasonable viscosity value which applies to the region 
(10 •8 Pa s <11<1020 Pa s), 'r is very large for the ECSZ, and the 
LHM and SZM solutions reduce to their asymptotic behavior, 
i.e., simple shem' at the appropriate rate (9 mm/yr) for the SZM 
and zero for the LHM. Thus the differences to be encountered 

between the LHM and SZM partially reflect the sampling of the 
velocity field about four tenths of the way through the present 
SAF earthquake cycle but more tangibly reflect the sampling of 
it near the end of a very long earthquake cycle in the ECSZ. 
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4.2.3 Modeling of Fault-Parallel Velocity Field Savage and 
Lisowski [1998] have noted that the strain field as observed by 
trilateration networks close to the big bend section of the SAF 
is well-described in terms of steady slip below an apparent 
locking depth of 30 km [Savage and Burford, 1973], much 
deeper than could be plausible with a brittle-ductile transition of 
-15 km. The fault-parallel velocity around the entire Mojave 
section of the SAF [Shen et al., 1996] out to -200 km from the 
fault is also unusually broad. The velocity field determined by 
Shen et al. [1996] is based primarily on trilateration and GPS 
data covering the time interval 1971 to 1993 and is essentially a 
picture of the interseismic velocity field free from 1992 Landers 
or 1994 Northridge earthquake perturbations. (Where neces- 
sary, Shen et al. performed a correction for the coseismic 
offsets of the Landers earthquake.) 

Given the -600 km length of repeating southern SAF earth- 
quakes compared with the aperture of the observations, a 2-D 
geometry is assumed applicable. Figure 11 compares observed 
fault-parallel velocity with the predictions of the LHM and 
SZM for various choices of dimensionless SAF cycle time 'r0, 
assuming H=15 km (SAF and ECSZ) and D/H=0.9 (SAF). 
Other parameters are prescribed by Table 1. The curves shown 
in Figure 11 are labeled according to the value of 'r/% for the 
SAF system during the 21st cycle. If the observations do 
indeed correspond roughly to a time -0.4-0.5 % into the 
present SAF cycle, then the SZM is found to provide a better fit 
to the data. This is most clearly seen for the case % = 12 
(which yields better fits to both the SZM and LHM than the 
other values of %) and at observation distances > 100 km from 
the SAF, where observed velocities fall close to 'r = 0.4 or 

0.5z0 for the SZM but depart significantly from z = 0.4 or 0.5z0 
for the LHM. 

A grid search over a wide model space confirms the better 
performance of the SZM. Misfit was calculated according to 

1 Vobs -- Vca• (52) •2 r (H ,D ,'r0) = -• i=1 

where Z2r is reduced Z 2, N=71 is the number of observations, 
i is calculated velo- i is observed velocity at point i and vca• V obs , 

city at point i for the given H, D, and z0, assuming z = 0.45z0. 
Figure 12 shows three slices of the misfit pattern obtained in 
H-D/H-z0 space for both the LHM and SZM. The 
minimum misfit obtained in each slice is labeled with a cross. 

There is only marginal difference in the results for different 
values of H. Minimum misfit ranges are 2.86 (H=12 km), 3.01 
(H=12 km), and 3.15 (H=18 km) for the LHM; 2.21 (H=12 
km), 2.24 (H=15 km), and 2.25 (H=18 km) for the SZM. 
Optimal z0 tends toward slightly lower values as H is 
increased, and the LHM produces generally lower values of 
optimal z0 than the SZM. If the SZM applies and H=15 is the 
appropriate elastic layer thickness, then a range of z0 = 9-13 
and D = 12-15 km is obtained (Figure 12). 

4.3. Applicability of SZM Versus LHM 

Given the fits of the data with the three parameters H, D, 
and %, the addition of the one parameter L, the shear zone 
width in the SZM, is highly significant. A simple F test shows 
that the improvement in minimum Z2r obtained by choosing 
L=300 km, in addition to the other three parameters, is found 
to be significant at the 99.98% confidence level. Although this 
strongly suggests that the SZM is a better description of the 

seismic cycle in southern California than the LHM, several 
unmodeled factors might affect this evaluation. The sharp con- 
trast in seismic velocity across the Garlock fault [e.g., Hum- 
phreys and Dueker, 1994] suggests that the Sierra Nevada block 
is relatively cooler at uppermost mantle depths compared with 
the Mojave desert, suggesting a sharp contrast in plastosphere 
viscosity across the Garlock fault. Thus the assumption of uni- 
formity of material properties parallel to the fault used in the 
2-D modeling is only approximately satisfied. The modeling 
also assumes that the elastic shear modulus is vertically uni- 
form, whereas mantle shear modulus is typically about twice as 
large as the crustal value. This has a potentially significant 
effect on the coseismic displacement field produced by strike- 
slip faulting [Pollitz, 1996], but postseismic behavior is 
governed primarily by the Maxwell relaxation time of the plas- 
tophere, which can be kept constant by scaling plastosphere 
viscosity with the shear modulus. 

Both the LHM and SZM are subject to these limitations. 
The LHM, however, suffers from the additional limitation that 

<-39 mm/yr relative velocity parallel to the Pacific-North 
America motion is predicted at 'r- 0.4-0.5 % over a several 
hundred kilometer width centered on the SAF. This falls short 

of the 46 mm/yr relative velocity between VLB! sites Vanden- 
berg and Flagstaff [Gordon et al., 1993] located southwest and 
northeast of the SAF, respectively. The fact that the SZM 
satisfactorily matches both the VLBI and plate motion con- 
straints on local Pacific - North America relative motion, 

whereas the LHM does not, is a direct consequence of the opa- 
city of the LHM to strain accumulation on the ECSZ near the 
end of its cycle. It is difficult to see how the LHM could be 
rectified to account for the missing velocity. 

In both models the 2-D assumption may be only marginally 
valid for the ECSZ. The combined 1992 Landers and 1999 

Hector Mine ruptures account for at most a 100 km length of 
the ECSZ, and only this portion is known for certainty to have 
been late in a seismic cycle when recent measurements were 
made. This leaves open the possibility that signals from other 
ECSZ events preceding the earliest VLBI measurements -1980, 
particularly north of the Landers rupture zone, could contribute 
to interseismic velocity in the LHM. Tangible signals from 
such earthquakes, however, would be contingent upon the 
observation period being relatively soon following the 
earthquake(s), within a few dedades if the viscoelastic 
stratification determined by Pollitz et al. [2000] for the Mojave 
desert region is applicable. Relaxation following the 1871 
Owens Valley earthquake might contribute an observable signal 
north of the Garlock fault [Dixon et al., 2000], but the 
predicted contribution to the Vandenberg-Flagstaff motion in 
1980 is only 0.4 mm/yr, assuming that the 1871 earthquake was 
twice as large as the Landers earthquake. This does not 
account for the >-7 mm/yr of missing fault-parallel velocity in 
the LHM. 

4.4. Plastosphere Viscosity 

Both the LHM and SZM imply similar values of z0- 10 for 
the dimensionless length of the seismic cycle (Figure 12). 
Assigning the value g - 30 GPa to the rigidity then leads to an 
estimate of plastosphere viscosity rl = 1.6 x 1019 Pa s. (The 
viscosity is proportionally higher if account is made for the 
larger rigidity for the mantle.) This value is -2-3 times larger 
than the crust and mantle viscosity estimates of Pollitz and 
Sacks [1992] based on analysis of postseismic relaxation fol- 
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Figure 12. Fits of LHM and SZM to fault-parallel interseismic velocity data around the Mojave section of the 
SAF [Shen et al., 1996]. Three slices of reduced •2 in H - D//-/ - 'Co space are calculated using equation (52) 
as a function of these three parameters, other parameters being prescribed by Table 1, assuming that the obser- 
vations correspond to a time 'C=0.45'c0 into the present cycle. 

lowing the 1857 Fort Tejon earthquake. A possible explanation 
fo the differing viscosity estimates may be lateral and vertical 
variation in viscosity. In addition, the plastosphere is probably 
not a Maxwell viscoelastic material but likely possesses a non- 
linear stress-strain relation of the form /• = A o", where o and 
/• are the second invariant of the stress and strain rate tensor, 
respectively, A is a constant which depends on temperature, 
pressure, and the material, and n is a constant -3. Pollitz et al. 
[2000] hypothesize that such a stress-strain relation may explain 
the relatively large strain rates (-10 times the interseismic strain 
rate) observed for the immediate postseismic epoch following 
the M7.3 1992 Landers earthquake, compared with the more 
moderate strain rates (-3 times the interseismic strain rate) dur- 
ing the subsequent 3 years after o had presumably relaxed 
somewhat. The stress change following the M8.3 1857 Fort 
Tejon earthquake were larger and perhaps more long-lived than 
that following the Landers earthquake. Relatively high o fol- 
lowing the Fort Tejon earthquake may have persisted for the 2 
to 3 dedades spanning the triangulation observations used in the 
modeling of Pollitz and Sacks [1992]. This may have led to a 
tangible influence of the nonlinear effect and reduced the effec- 
tive viscosity associated with these observations. 

5. Conclusions 

I have reexamined the behavior of a 2-D strike-slip fault 
zone in an elastic-viscoelastic coupled medium in order to 
investigate the effect of embedding the system in a finite width 
shear zone. For simplicity, focus has been on a system consist- 
ing of a schizosphere (elastic upper crust) overlying a uniform 
Maxwell viscoelastic plastosphere. The strike-slip fault occu- 

pies a portion of the schizosphere, and the considered models 
account for loading of the fault by constant motion of the shear 
zone edges and (possibly) steady slip on the deeper extension 
of the fault, periodic rupture of the fault, and postseismic relax- 
ation. 

The conventional (laterally homogeneous) viscoelastic cou- 
pling model is driven by dislocation sources only on the fault 
plane and its deeper vertical extension. It possesses the proper- 
ties that after sufficient time after initiation of the system, (1) 
the average velocity during a complete elementary earthquake 
cycle is the average slip rate of the side of the fault of the con- 
sidered point and (2) the far-field velocity approaches the same 
constant slip rate. In the viscoelastic shear zone model we 
impose the constraint that the velocities of prescribed shear 
zone edges be constant. The deformation in the shear zone sys- 
tem is obtained by transformation of the laterally homogeneous 
system by employing an infinite sequence of image sources 
parallel to the fault plane, and it is found to satisfy the same 
long-term average behavior (i.e., properties 1 and 2 above) as 
the conventional system. The assumed constant velocity boun- 
dary conditions at the eddges is violated by the coseismic dis- 
placement step associated with periodic slip events. However, 
the induced bias in interseismic velocity is small provided that 
the shear zone width is much greater than the seismogenic rup- 
ture depth. 

For fault geometries and viscoelastic stratification likely to be 
encountered in practice, the shear zone model generally differs 
substantially from the conventional model. In particular, for a 
low-viscosity plastosphere (Maxwell relaxation time short com- 
pared with the length of the seismic cycle) the conventional 
model exhibits large variations in velocity over a single cycle. 
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This reflects the process of rapid postseismic relaxation early in 
the cycle versus small relaxation effects late in the cycle, 
leading to a sharp velocity decrease with time until the cycle is 
renewed with another earthquake. By contrast, the shear zone 
model exhibits a more moderate velocity decrease during the 
cycle because of the stabilizing effect of the shear zone edges. 
The different responses of these two models are such that infer- 
ence of the mechanical properties of the schizosphere- 
plastosphere system such as plastosphere viscosity, elastic plate 
thickness, depth(s) to onset of steady slip, and slip partitioning 
among adjacent strike-slip fault strands, may differ substantially 
according to which model is used to interpret the interseismic 
velocity pattern. Modeling of the interseismic velocity field 
around the Mojave segment of the San Andreas fault out to 
-200 km distance shows that the conventional model can 

explain the near-fault portion of the observed velocity field but 
substantially underpredicts the velocity at distance >50-100 km 
from the fault. The viscoelastic shear zone model successfully 
explains both the near-fault and more distant portions of the 
velocity field, suggesting that lateral variations in viscosity tan- 
gibly shape the interseismic velocity field. Assuming that 
recent observations correspond to a time of four to five tenths 
into the earthquake cycle, interseismic strain accumulation is 
characterized as -50 mm/yr Pacific-North America plate motion 
being accommodated within a 600-km-wide shear zone which 
includes the southern San Andreas fault system and Eastern 
California Shear Zone, with elastic layer thickness of-15 km, 
seismogenic layer thickness of 12-15 km, and plastosphere 
viscosity of 1.6x•!019 Pa s. 

The viscoelastic shear zone model may further provide a 
framework for evaluating the effect of an external transient 
change in velocity. Such a change may be driven by postse- 
ismic relaxation effects from distant earthquakes outside of the 
local strike-slip fault system. The given framework can accom- 
modate a sudden or gradual change in the velocities of the 
shear zone edges as well as the deeper extension(s) of the 
fault(s) which would accompany the transient change. The 
short-term consequences of an external perturbation should, 
according to the behavior revealed here, have a character dif- 
ferent from the behavior of the mature fault system, and they 
could help to clarify the complex response of interacting fault 
systems. 

Appendix A 

In order to transform solutions of the laterally homogeneous 
model (i.e., equations (18) and (23)) into equivalent solutions in 
the viscoelastic shear zone model, we construct appropriate 
image solutions of each of the components of the laterally 
homogeneous model. This is accomplished with the Greens 
function G (x ;xo,L ,h), defined as the response of the viscoelas- 
tic system, embedded in the shear zone of width 2L, to a unit 
Burgers vector applied at position x0 (-L < x0 < L) and depth 
h. This corresponds to substitution of the deformation field 
u0 = tan-i(x/h) into (7) (z-displacement is understood). This 
leads to 

h + tan- 1 .x + 2Lm Xo m= h 
even m 

+ tan_l + tan._1 x + 2Lm + xo 
h h 

m 

+ tan -1 
h 2 L 

71; X 

= Geven + G odd 2 L (-L < x < L). (A 1) 

The sum of the even m terms in (A1), including the 
tan-l[(x -x0)/h] term, can be evaluated with (B25) of Appen- 
dix B. Using the notation of Appendix B, we substitute, for 
even rn, 

X --X0 
C•= 

h 

h' 

leading to a contribution to G of 

(A2) 

G even = tan- 1 coth nh tan rc(x - xo) 
4L 4L 

(A3) 

Similarly, the sum of the odd rn terms in (A 1) is obtained from 
(B24) with 

x +x0 

h 

2L 

h' 

leading to a contribution to G of 

(A4) 

G odd = tan -1 
rch 

tanh-• tan• 
n(x + xo) 

4L 
(A5) 

This yields 

G (x ;xo,L ,h ) = tan -1 

+ tan -1 

r•(x - x0•) coth•hLh tan 4L 
r•(x + x0•) tanh•hLh tan 4L 

71; X 

(A6) 
2 L 

Appendix B 

We seek to evaluate the sums 

/odd = • [tan-l(c• + • m) + tan-l(Cz - • rn)] 
m=l 

odd rn 

/eve,, = tan-l(00 + • 

(B1) 

[tan-l(ot + [3 m) + tan-l(ot - [• rn )] (B2) 
m=2 

even m 

for real-valued cz and 13 which satisfy I < 1 and 13 > 0. 
Differentiation with respect to cz yields 

oo 1 

Sodd = •(xlodd = Z 1 + (C• + [3 rn)2 (B3) m =-oo 

odd rn 

Seven = a,deven = • 1 + (CZ + • rn )2' (B4) 
m 

odd m even m 



POLLITZ: VISCOELASTIC SHEAR ZONE MODEL 26,559 

Note that Seven is related to Sod d by 

S even(0•,•) = S odd((•Z"}'•,•) (US) 

the + or- sign being chosen such that 

I-1 < 1. (B6) 
Our strategy will thus be to evaluate Sod d and Sere, and then 
evaluate load and leve, by integration with respect to 

Consider the function 

y (ot,•,¾) = • eyre 
1 +(ot+13m)2 m=l 

odd rn 

for ¾ _< 0. It is related to Sod d by 

S odd = Y (ot,[3,0) + y (-ot,[3,0) 

It satisfies the second-order differential equation 

cz2+ 1 1 e ¾ •)• Y + 20t•-l•)v Y + ['•• Y = [32 1 - e 2¾ 
This has homogeneous solutions 

Yl = eS-•(-a + i)¾ 

Y2 = eS-l(-a - i) ¾' 
With Wronskian 

(B7) 

(B8) 

= R (¾). (B9) 

(B10) 

W(yl,Y2) = y• •¾Y2 - Y2 •)yYl = - 2 i •-1 (Bll) 

a particular solution of (B9) is [Simmons, 1972] 

Y l R (¾) 

Y =Yl I -y2R(y) dy+y2 I •7,•22) d y. •V• 1,Y2) (B12) 

The general solution of (B9) is the sum of the particular solu- 
tion (B12) plus a linear combination of the homogeneous solu- 
tions Yi and Y2. From (B7), however, we have that y(ot,•,¾) 
and Dyy(cz,•,¾) tend toward zero as ¾---->- oo, and therefore 
(B12) is the required solution. Substituting (B10) and (Bll) 
into (B12) and then (B12) into (B8), we find 

Soda =- • -1 ] [eøtS-I Y + e- øtS-I Y ] sin(•-l¾) e ¾ -oo 1 - e 2¾ d¾. (B13) 
The integrand is symmetric with respect to •, and therefore 

[ Sødd = 2 -57 eiW ' _ iS-' 
-oo 

[eOtW'¾ + e- o0-'¾ ] e¾ d¾. (B14) 
1 - e 2• 

To evaluate (B 14), it suffices to consider the integral 

I 1 iW' •S-'¾ e¾ I(00 = -•- e ¾ e 2• d¾. (B15) 
The integration in (B15) may be completed in the upper 
complex ¾ plane. Evaluating the contribution of residues at 
¾ - 0, in, 2i n, etc., we obtain 

l(•) 2hi {• • I 1 • fi-linj(i+•)inj]} = e e 

4 2 •=• 

1 1 e i n fi-'(i + •) 

=- • 4 2 1 + e i xW'(i +•) ' (B16) 

2 Re l(cz)= -5- 

Twice the real part of I (cz) is 

-1 + e-2 nS -1 

1 + e -2 ns-l-} ' 2 e-'O-' COS(n• -1 00 
Since 

(B17) 

= - 2 Re [I (cz) + I (-cz)] (B 18) 
2 

and 2 Re I (cz) is symmetric with respect to cz, we obtain 

n •-1 1 - e -2ns-• = . (B19) S odd -•- 1 + e -2 
Equation (B5) then yields 

n •-1 1 -e -2nW' = . (B20) S eve,• -•- 1 + e -2 
We now evaluate 

/odd = I Sodd(Ot,[3) d Or. (B21) 
o 

Defining r = hi3 -1, q = e -r, u = r ix, and du = r d (x we have 

1 1 du. (B22) /odd = -•- (1 - q2) • (1 + q2) + 2 cosu 0 q 

The integral in (B22) can be evaluated using [Abramowitz and 
Stegun, 1984, equation 4.3.133] 

• dz _ 2 a + b cosz 
(a 2 - b 2) 5- 

tan -I 
(a - b) t•-•- 
(a 2 - b2) 5. 

Iodd= tan-1 [tanh riff-1 tan nf•-lCZ ]. 2 2 

(a 2 > b2), 

leading to 

(B23) 

(B24) 

(B25) 

Similarly, we find from (B20) and (B23) that 

/even = i Seven((Z'•) d(z 
0 

= tan-1 oth tan 2 ' 
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